(27)

Entnspeopezororie ra 20 S,wrutike?
n - Soraf è Bernoull:
$p=$ nidanot. $\operatorname{Eniwx}=P(E)$
$x=a_{p} E$ or $n-\delta$ ouk हो,,$x \sim B(n, p) \quad \& E(x)=n p \quad \forall \quad \operatorname{Var}(x)=n p(p-1)$
$\hat{p}=\frac{x}{n} \quad \xi E(\hat{p})=E\left(\frac{x}{n}\right)=p$ dhत at $\xi: \lambda$.
$\sigma_{\hat{p}^{2}}^{n}=\operatorname{Var}\left(\frac{x}{n}\right)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n} \sim \sigma_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
$x \frac{\hat{p}^{2}}{} N(n p, n p(1-p)) \quad \dot{n} \quad \hat{p}^{n} \sim N\left(p, \frac{(1-p) p}{n}\right)^{n}$

$$
\frac{\hat{p}-p}{\sqrt{\frac{p(p-1)}{n}}} \sim N(0,1)
$$

Tia va हों̀ $\gamma \xi$ oufe unovizars ms foppís
(i) $H_{0}: p \leqq p_{0}$ is $H_{a}: p>p_{0}$
(i) $x \geqslant k a$
(ii) $H_{0}: p \geqq p_{0} \quad$ s $\quad H_{0}: p<p_{0}$
(ii) $x \leq k a ́$
(iii) $H_{0}: P=P_{0} \quad \xi \quad H a: P \neq P_{0}$
(iii) $x \leqslant k_{Q / 2}^{\prime} \quad$ i $x \geqslant k_{4 / 2}$
bnow K_{x}^{\prime} is K_{α} o faganivespos is filspoiepos anniozalxa argenpuos re zar omio:

$$
\begin{aligned}
& \sum_{x=0}^{n}\left(\frac{y}{x}\right) p_{0}^{x}\left(1-p_{0}\right)^{n-x} \leqslant a \quad 1 \quad \sum_{x=0}^{n}\binom{n}{k} p_{0}^{k}\left(1-p_{0}\right)^{n-x} \leqslant a \\
& 0 x\left(B \ln =10, P=\frac{1}{3}\right) \\
& P(x=10)=0,000017 \\
& P(x-9)=0,000376 \quad \square P(x>7)=0,019548 \leq 0,05(a)\} \\
& \left.\begin{array}{l}
P(x=8)=0,003027 \Rightarrow P(x \geqslant 7)=0,019548 \leqslant 0,05(a) \\
P(x=7)=0,0162668
\end{array}\right\} \Rightarrow P(x \geqslant 6)=0,076233 \\
& P(x-6)=0,056678 \\
& H_{0}: p=\frac{1}{3} s H_{e} p \geqslant \frac{1}{3} \quad K_{p} \cdot r_{p}: x \geqslant K_{\alpha}^{\downarrow}\left(=k_{0,05}\right) \\
& X \text { 地 } B\left(10, \frac{1}{3}\right), \Rightarrow n=10, P=\frac{1}{3}
\end{aligned}
$$

$(1-a) 100 \% \Delta E \gamma \alpha$ то $p: \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Tie zor edirto zwv (i), (ii) s (iii) poorgjouke

$$
U-L=2 \omega=2 z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \Rightarrow n=\hat{p}(1-\hat{p})\left(\frac{z_{\alpha / 2}}{w}\right)^{2} \Rightarrow
$$

$n \leqslant\left(\frac{z_{a / 2}}{w}\right)^{2} \frac{1}{4}$ nari $\hat{p}(1-\hat{p}) \leq \frac{1}{4}$ fran $0 \leq \hat{p} \leq 1$
ID. 44

$$
\begin{aligned}
& n=2789<2431 \\
& p=n \text { itav. } \varepsilon n \beta \cdot \sim, \hat{p}=\frac{2431}{2789}=0,872 \\
& 45 \% \Delta E:[L, 4]=[0.86,0.884]
\end{aligned}
$$

$H_{0}: p=0,3$, $H_{\alpha}: p \neq 0,9, x=0,05$

$$
\text { Ke.k. }|z| \geqslant z_{1 / 2}(=28.03)=1,6
$$

lee sonop. in Ho

	+3	-	2i000
+	25	14	39
$A-$	4	17	21
Eund.	23	31	60

 A) Eigupon 2 nororezir xal nx Jeign-7Eor wow Mc-Nemar Feriki: $2 x$ fìतy eior Anyluopar unotettonal or 2 Soseparies fe oken m oüpupion zins. amederfaukizines aintilt.
 zido outnipeote Eniwxias zur foratariwir 152 ariocolye E20xos tes of itgyer uns tho: $P_{1}=P_{e}$

	E	A	Evad.
1	E	X	Y
\vdots	$A+Y$		
a	A	W	$2+W$
civado	$x+2$	$Y+W$	N

$$
\left.\begin{array}{l}
\hat{P}_{1}=\frac{x+y}{N}, \hat{P}_{e}=\frac{x+2}{N} \\
x+y \sim B\left(n, p_{1}\right) \\
\left.x+2 \sim B\left(n, p_{2}\right)\right\} E(x+y)=N p_{1}=E(x)+E(y) \\
E(x)=N p_{2}=E(x)+E(z)
\end{array}\right\}
$$

$\xrightarrow{\mathrm{Ho}_{0}}$ $E(v)=E(2)$

Av $n=y+2$ zize izar H_{0} esuruan $y \sim B\left(u, \frac{1}{2}\right)$ eee Y reoso $N\left(\frac{n}{2}, \frac{n}{4}\right)$ kal हेzना 2 ora पouk ne xprofion,s Eivan $M=\frac{y^{4}-\frac{n}{2} \pm \frac{1}{2}}{\sqrt{n} / 2} \stackrel{\text { noror }}{\sim} N(0,1)$

$$
\begin{aligned}
M=\frac{Y-\frac{n}{2}}{\sqrt{n} / 2} \overbrace{\text { moogr }} N(0,1) \Rightarrow M & =\frac{Y-\frac{n}{2}-\frac{1}{2}}{\sqrt{n} / 2} \text { ar } y>\frac{n}{2} \\
M & =\frac{Y-\frac{n}{2}+\frac{1}{2}}{\sqrt{n} / 2} \text { ar } y<\frac{n}{2}
\end{aligned}
$$

$H_{0}: A$ is $B 2$ id. anzid. $\left(p_{2}=p_{2}\right)$
$H_{a}: A$ is B doqoporné ($P_{1} \neq P_{2}$)

$$
M=\frac{14-\frac{18}{2}-\frac{1}{2}}{\sqrt{18} / 2}=2,12
$$

Kp. $n \varepsilon_{p} .|M| \geqslant z_{a / 2}\left(=z_{0,025}=1,96\right) \quad$ Cncell $2,12>1$; 96 dire $p-2 \mid-\dot{S}=P(|M| \geqslant 2,12)=z \cdot P\left(M_{1} \geqslant 8,12\right)=2 \cdot 0,017=0,034<0,05$ aropinzw urr H_{0}

Evippion. Sue noovoulv, xupi) Esfa No. 4 to
Exo-ke too a aoevar $<{ }_{50} 0$ poopt phacebo $<{ }_{16}^{34}$
H:: 2 geptak Jir siven awzedsotheris. (20 is aroist. (LC 2 placelo) Ervica

 Xapermpionts gripiope d.
 arijkour ozur kampopia A. Ever ux. कहijte figioror n, exaljerza ani sar $n \lambda .15$ Eom X_{1} fithn ve arikour orup kazipopial A. Enions Ève wx. Silfte fijelors u_{2} an' zor At, 2 s Eome
x_{2} uetiAn unt kamg ropias A.

$$
\hat{p}_{1}=\frac{x_{1}}{n_{1}} \& x_{1} \sim B\left(n_{1}, p_{1}\right) \quad \& \hat{p}_{2}=\frac{x_{2}}{n_{2}} \text { \& } X_{2} \sim B\left(n_{2}, p_{2}\right)
$$

$$
\Rightarrow \hat{P}_{1}-\hat{P}_{2} \xrightarrow{\operatorname{mon} x} N\left(P_{1}-P_{2}, \frac{X_{2}\left(1-P_{1}\right)}{n_{1}}+\frac{P_{2}\left(1-P_{2}\right)}{n_{2}}\right)
$$

$$
\begin{aligned}
& \frac{\hat{P}_{1}-\hat{P}_{2}-\left(p_{1}-P_{2}\right)}{\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-P_{2}\right)}{n_{2}}}} \sim N(0,1) \rightarrow \\
& \rightarrow(1-a) L 00 \% \Delta E \text { (ra } p_{1}-P_{2}: \hat{P}_{1}-\hat{P}_{2} \pm Z_{a / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{P_{2}}\left(1-\hat{P_{1}}\right)}{n_{2}}}
\end{aligned}
$$

Av a तuvizue n $H_{0}: p_{1}=p_{2}=p \Rightarrow \hat{p}_{1}=\hat{p}_{2}=\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+v_{2}}$
Tla zor होtegto ms to xpuatomate 20 ouramerbe

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}-0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \frac{H}{\text { moosg. }} N(0,1) k k p \cdot n द 10 x \text {. avad.o }
$$

Ox(troceiptero)

$$
\begin{aligned}
& \hat{P}_{1}=\frac{34}{50}, \hat{P}_{2}=\frac{3}{50}, \hat{P_{1}}=\frac{43}{100} \\
& H_{0}: P_{1}=p_{2} \quad, \quad H_{a}: P_{1}>P_{2} \\
& z=\frac{\frac{34}{50}-\frac{9}{50}}{\sqrt{\frac{43}{100}\left(1-\frac{43}{100}\right)\left(\frac{1}{50}+\frac{1}{50}\right)}}=5,05 \\
& Z>Z_{a}(=20,01=2,326)
\end{aligned}
$$

$5,05>8,326$ aroppin 2esm in tho
$P^{\prime}(2 \geqslant 5,05) \cong 0,00<0,01$ dor amppinzeran y H_{0}

